2243 CÁLCULO VECTORIAL
La asignatura contribuye a desarrollar un pensamiento lógico-matemático al perfil del ingeniero y aporta las herramientas básicas para introducirse al estudio del cálculo vectorial y su aplicación, así como las bases para el modelado matemático. Además proporciona herramientas que permiten modelar fenómenos de contexto.
La importancia del estudio del Cálculo Vectorial radica principalmente en que en diversas aplicaciones de la ingeniería, la concurrencia de variables espaciales y temporales, hace necesario el análisis de fenómenos naturales cuyos modelos utilizan funciones vectoriales o escalares de varias variables.
La asignatura está diseñada de manera que el estudiante pueda representar conceptos, que aparecen en el campo de la ingeniería por medio de vectores; resolver problemas en los que intervienen variaciones continuas; resolver problemas geométricos en forma vectorial; graficar funciones de varias variables; calcular derivadas parciales; representar campos vectoriales que provengan del gradiente de un campo escalar, así como su divergencia y rotacional; resolver integrales dobles y triples; aplicar las integrales en el cálculo de áreas y volúmenes.
Con esta asignatura se espera desarrollar la capacidad de análisis y síntesis en actividades de modelación matemática; adquirir estrategias para resolver problemas; elaborar desarrollos analíticos para la adquisición de un concepto; pensar conceptualmente, desarrollar actitudes para la integración a grupos interdisciplinarios; aplicar los conocimientos adquiridos a la práctica y aprovechar los recursos que la tecnología ofrece, como el uso TIC’s.
Esta asignatura sirve como base para otras asignaturas de las diferentes especialidades tales como: estática, dinámica y mecanismos, con la representación geométrica y álgebra de vectores; electromagnetismo y teoría electromagnética con el cálculo del gradiente, divergencia y rotacional de un campo vectorial; en termodinámica con el cálculo de derivadas parciales en las diferentes formas de la segunda ley; en fenómenos de transporte, transferencia de masa y transferencia de calor, con el cálculo de derivadas parciales y las ecuaciones que modelan estos fenómenos. Se pueden diseñar proyectos integradores con cualquiera de ellas.
La importancia del estudio del Cálculo Vectorial radica principalmente en que en diversas aplicaciones de la ingeniería, la concurrencia de variables espaciales y temporales, hace necesario el análisis de fenómenos naturales cuyos modelos utilizan funciones vectoriales o escalares de varias variables.
La asignatura está diseñada de manera que el estudiante pueda representar conceptos, que aparecen en el campo de la ingeniería por medio de vectores; resolver problemas en los que intervienen variaciones continuas; resolver problemas geométricos en forma vectorial; graficar funciones de varias variables; calcular derivadas parciales; representar campos vectoriales que provengan del gradiente de un campo escalar, así como su divergencia y rotacional; resolver integrales dobles y triples; aplicar las integrales en el cálculo de áreas y volúmenes.
Con esta asignatura se espera desarrollar la capacidad de análisis y síntesis en actividades de modelación matemática; adquirir estrategias para resolver problemas; elaborar desarrollos analíticos para la adquisición de un concepto; pensar conceptualmente, desarrollar actitudes para la integración a grupos interdisciplinarios; aplicar los conocimientos adquiridos a la práctica y aprovechar los recursos que la tecnología ofrece, como el uso TIC’s.
Esta asignatura sirve como base para otras asignaturas de las diferentes especialidades tales como: estática, dinámica y mecanismos, con la representación geométrica y álgebra de vectores; electromagnetismo y teoría electromagnética con el cálculo del gradiente, divergencia y rotacional de un campo vectorial; en termodinámica con el cálculo de derivadas parciales en las diferentes formas de la segunda ley; en fenómenos de transporte, transferencia de masa y transferencia de calor, con el cálculo de derivadas parciales y las ecuaciones que modelan estos fenómenos. Se pueden diseñar proyectos integradores con cualquiera de ellas.
2243 PROCESOS DE FABRICACIÓN
Esta asignatura aporta al perfil del ingeniero mecatrónico los conocimientos y habilidades necesarias donde administra, asegura la calidad, eficiencia, productibilidad y rentabilidad de los procesos para la fabricación de diferentes elementos empleados en máquinas, equipos y sistemas mecatrónicos.
Identificar el proceso de fabricación adecuado para piezas y selecciona adecuadamente los procesos de ensamble para la manufactura de productos.
Identificar el proceso de fabricación adecuado para piezas y selecciona adecuadamente los procesos de ensamble para la manufactura de productos.
2243 ELECTROMÁGNETISMO
Esta asignatura aporta al perfil del Ingeniero la capacidad para aplicar sus conocimientos y explicar fenómenos relacionados con los conceptos básicos de las leyes y principios fundamentales del Electromagnetismo; estos conocimientos son la base para la asignatura de circuitos eléctricos, de teoría electromagnética y máquinas eléctricas (transformadores, maquina síncrona, máquina de inducción y máquina de corriente continua).
Los temas de la asignatura están basados en los fundamentos de la electricidad y el magnetismo aplicándolos en el cálculo y solución de problemas de electrostática y electrodinámica que son de mayor aplicación en el quehacer profesional del ingeniero.
Los temas de la asignatura están basados en los fundamentos de la electricidad y el magnetismo aplicándolos en el cálculo y solución de problemas de electrostática y electrodinámica que son de mayor aplicación en el quehacer profesional del ingeniero.
2243 ESTÁTICA
La estática contribuye con las herramientas que le permiten al egresado, identificar, analizar y sintetizar sistemas mecánicos que se encuentran en equilibrio, aplicando principios físicos soportados por análisis matemáticos.
Los conocimientos afrontados y las competencias desarrolladas en estática son base, también, para comprender los contenidos de las posteriores asignaturas que cursarán, particularmente las de mecánica de materiales y diseño de elementos mecánicos.
La estática muestra al alumno, como se mencionó, herramientas esenciales para saber cómo construir diagramas de cuerpo libre, la aplicación de las ecuaciones de equilibrio de fuerzas concurrentes y no concurrentes, el cálculo de momentos, obtención de la ubicación de los centroides de línea, área y volumen, la obtención de momentos de inercia de áreas, etcétera, que le permiten el desarrollo de competencias que serán de gran ayuda para solucionar cualquier sistema en reposo que se encuentre sometido a fuerzas.
La asignatura se relaciona indirectamente con la de diseño de elementos mecánicos, ya que las competencias previas de ésta son las de mecánica materiales, que a su vez se basa en las competencias genéricas de la estática, en todos los temas del programa, específicamente en las siguientes:
• Interpretar la condición de equilibrio estático para la partícula y el cuerpo rígido,
• Resolver situaciones, en el plano o en el espacio, donde se involucra el equilibrio estático utilizando tanto la segunda ley de Newton y la expresión de momentos producido por una fuerza.
• Construcción de diagramas de cuerpo libre para determinar las cargas que afecten el sistema
• Obtener las fuerzas internas que actúan en cada elemento que conforman una estructura plana o bastidor.
• Calcular la ubicación del centroide de cualquier área. • Calcular el momento de inercia de cualquier área.
Los conocimientos afrontados y las competencias desarrolladas en estática son base, también, para comprender los contenidos de las posteriores asignaturas que cursarán, particularmente las de mecánica de materiales y diseño de elementos mecánicos.
La estática muestra al alumno, como se mencionó, herramientas esenciales para saber cómo construir diagramas de cuerpo libre, la aplicación de las ecuaciones de equilibrio de fuerzas concurrentes y no concurrentes, el cálculo de momentos, obtención de la ubicación de los centroides de línea, área y volumen, la obtención de momentos de inercia de áreas, etcétera, que le permiten el desarrollo de competencias que serán de gran ayuda para solucionar cualquier sistema en reposo que se encuentre sometido a fuerzas.
La asignatura se relaciona indirectamente con la de diseño de elementos mecánicos, ya que las competencias previas de ésta son las de mecánica materiales, que a su vez se basa en las competencias genéricas de la estática, en todos los temas del programa, específicamente en las siguientes:
• Interpretar la condición de equilibrio estático para la partícula y el cuerpo rígido,
• Resolver situaciones, en el plano o en el espacio, donde se involucra el equilibrio estático utilizando tanto la segunda ley de Newton y la expresión de momentos producido por una fuerza.
• Construcción de diagramas de cuerpo libre para determinar las cargas que afecten el sistema
• Obtener las fuerzas internas que actúan en cada elemento que conforman una estructura plana o bastidor.
• Calcular la ubicación del centroide de cualquier área. • Calcular el momento de inercia de cualquier área.
2243 MÉTODOS NUMÉRICOS
Esta asignatura aporta al perfil del Ingeniero la capacidad de aplicar herramientas matemáticas, computacionales y métodos experimentales en la solución de problemas para formular modelos, analizar procesos y elaborar prototipos. Así mismo le permite utilizar el pensamiento creativo y crítico en el análisis de situaciones relacionadas con la ingeniería mecánica, mecatrónica e hidrológica para la toma de decisiones. De igual forma, podrá participar en proyectos tecnológicos y de investigación científica con el objetivo de restituir y conservar el medio ambiente para propiciar un desarrollo sustentable.
Esta asignatura requiere haber cursado previamente la asignatura de Algoritmos y Programación así como del dominio de las competencias de Álgebra lineal en la solución de sistemas de ecuaciones lineales, Cálculo Diferencial para determinar si existe una derivada así como el cálculo de la misma en funciones, las herramientas para obtener integrales definidas en Cálculo integral y resolver ecuaciones diferenciales de primer grado lineales y no lineales en Ecuaciones Diferenciales, también los conceptos básicos de un análisis estadístico de Probabilidad y Estadística. Por lo que Métodos Numéricos es una asignatura integradora y se pueden desarrollar proyectos de integración con cualquiera de ellas.
El propósito de la asignatura es que el estudiante tenga las herramientas para resolver problemas de ingeniería, física y matemáticas que no pueden resolverse por técnicas analíticas por resultar demasiado complejas o laboriosas. Estos problemas se presentan en una gran variedad de situaciones complejas en asignaturas posteriores del plan de estudios de Ingeniería Mecánica y Mecatrónica como Ecuaciones Diferenciales, Mecánica de Materiales I y II, Termodinámica, Transferencia de calor, Mecánica de Fluidos, Análisis de fluidos, Vibraciones Mecánicas, Diseño Mecánico I y II, Diseño de elementos mecánicos y mecanismos.
Esta asignatura requiere haber cursado previamente la asignatura de Algoritmos y Programación así como del dominio de las competencias de Álgebra lineal en la solución de sistemas de ecuaciones lineales, Cálculo Diferencial para determinar si existe una derivada así como el cálculo de la misma en funciones, las herramientas para obtener integrales definidas en Cálculo integral y resolver ecuaciones diferenciales de primer grado lineales y no lineales en Ecuaciones Diferenciales, también los conceptos básicos de un análisis estadístico de Probabilidad y Estadística. Por lo que Métodos Numéricos es una asignatura integradora y se pueden desarrollar proyectos de integración con cualquiera de ellas.
El propósito de la asignatura es que el estudiante tenga las herramientas para resolver problemas de ingeniería, física y matemáticas que no pueden resolverse por técnicas analíticas por resultar demasiado complejas o laboriosas. Estos problemas se presentan en una gran variedad de situaciones complejas en asignaturas posteriores del plan de estudios de Ingeniería Mecánica y Mecatrónica como Ecuaciones Diferenciales, Mecánica de Materiales I y II, Termodinámica, Transferencia de calor, Mecánica de Fluidos, Análisis de fluidos, Vibraciones Mecánicas, Diseño Mecánico I y II, Diseño de elementos mecánicos y mecanismos.
2243 DESARROLLO SUSTENTABLE
La intención de esta asignatura es que el egresado adopte valores y actitudes humanistas, que lo lleven a vivir y ejercer profesionalmente de acuerdo con principios orientados hacia la sustentabilidad, la cual es el factor medular de la dimensión filosófica del SNIT. Se pretende, entonces, la formación de ciudadanos con valores de justicia social, equidad, respeto y cuidado del entorno físico y biológico, capaces de afrontar, desde su ámbito profesional, las necesidades emergentes del desarrollo y los desafíos que se presentan en los escenarios natural, social-cultural y económico. El reto es formar individuos que hagan suya la cultura de la sustentabilidad y en poco tiempo transfieran esta cultura a la sociedad en general.
La diversidad temática del programa conforma la comprensión del funcionamiento de las dimensiones de la sustentabilidad y su articulación entre sí. Se presentan estrategias para la sustentabilidad que se han diseñado y desarrollado por especialistas, organizaciones y gobiernos a nivel internacional, nacional y local. Se refuerzan competencias para mejorar el ambiente y la calidad de vida humana, desde una perspectiva sistémica y holística.
La asignatura, por su aportación al perfil profesional, debe impartirse entre el quinto y séptimo semestre de las carreras del SNIT. Se sugiere integrar grupos con estudiantes de las distintas carreras, para fomentar el análisis y ejecución de estrategias para el desarrollo sustentable regional desde la multidisciplina, a la vez que se desarrolla la competencia de trabajar de manera interdisciplinaria.
El docente que imparta esta asignatura deberá tener conocimientos en las áreas de: química, biología, microbiología, economía, sociología, educación ambiental; es recomendable que el docente tenga experiencia en la elaboración de proyectos dirigidos a temas de desarrollo sustentable.
La diversidad temática del programa conforma la comprensión del funcionamiento de las dimensiones de la sustentabilidad y su articulación entre sí. Se presentan estrategias para la sustentabilidad que se han diseñado y desarrollado por especialistas, organizaciones y gobiernos a nivel internacional, nacional y local. Se refuerzan competencias para mejorar el ambiente y la calidad de vida humana, desde una perspectiva sistémica y holística.
La asignatura, por su aportación al perfil profesional, debe impartirse entre el quinto y séptimo semestre de las carreras del SNIT. Se sugiere integrar grupos con estudiantes de las distintas carreras, para fomentar el análisis y ejecución de estrategias para el desarrollo sustentable regional desde la multidisciplina, a la vez que se desarrolla la competencia de trabajar de manera interdisciplinaria.
El docente que imparta esta asignatura deberá tener conocimientos en las áreas de: química, biología, microbiología, economía, sociología, educación ambiental; es recomendable que el docente tenga experiencia en la elaboración de proyectos dirigidos a temas de desarrollo sustentable.
2243 TUTORÍAS III
Fomentar el desarrollo de hábitos en los estudiantes que contribuyan a su superación personal y profesional.
2233 CÁLCULO VECTORIAL
La asignatura contribuye a desarrollar un pensamiento lógico-matemático al perfil del ingeniero y aporta las herramientas básicas para introducirse al estudio del cálculo vectorial y su aplicación, así como las bases para el modelado matemático. Además proporciona herramientas que permiten modelar fenómenos de contexto.
La importancia del estudio del Cálculo Vectorial radica principalmente en que en diversas aplicaciones de la ingeniería, la concurrencia de variables espaciales y temporales, hace necesario el análisis de fenómenos naturales cuyos modelos utilizan funciones vectoriales o escalares de varias variables.
La asignatura está diseñada de manera que el estudiante pueda representar conceptos, que aparecen en el campo de la ingeniería por medio de vectores; resolver problemas en los que intervienen variaciones continuas; resolver problemas geométricos en forma vectorial; graficar funciones de varias variables; calcular derivadas parciales; representar campos vectoriales que provengan del gradiente de un campo escalar, así como su divergencia y rotacional; resolver integrales dobles y triples; aplicar las integrales en el cálculo de áreas y volúmenes.
Con esta asignatura se espera desarrollar la capacidad de análisis y síntesis en actividades de modelación matemática; adquirir estrategias para resolver problemas; elaborar desarrollos analíticos para la adquisición de un concepto; pensar conceptualmente, desarrollar actitudes para la integración a grupos interdisciplinarios; aplicar los conocimientos adquiridos a la práctica y aprovechar los recursos que la tecnología ofrece, como el uso TIC’s.
Esta asignatura sirve como base para otras asignaturas de las diferentes especialidades tales como: estática, dinámica y mecanismos, con la representación geométrica y álgebra de vectores; electromagnetismo y teoría electromagnética con el cálculo del gradiente, divergencia y rotacional de un campo vectorial; en termodinámica con el cálculo de derivadas parciales en las diferentes formas de la segunda ley; en fenómenos de transporte, transferencia de masa y transferencia de calor, con el cálculo de derivadas parciales y las ecuaciones que modelan estos fenómenos. Se pueden diseñar proyectos integradores con cualquiera de ellas.
La importancia del estudio del Cálculo Vectorial radica principalmente en que en diversas aplicaciones de la ingeniería, la concurrencia de variables espaciales y temporales, hace necesario el análisis de fenómenos naturales cuyos modelos utilizan funciones vectoriales o escalares de varias variables.
La asignatura está diseñada de manera que el estudiante pueda representar conceptos, que aparecen en el campo de la ingeniería por medio de vectores; resolver problemas en los que intervienen variaciones continuas; resolver problemas geométricos en forma vectorial; graficar funciones de varias variables; calcular derivadas parciales; representar campos vectoriales que provengan del gradiente de un campo escalar, así como su divergencia y rotacional; resolver integrales dobles y triples; aplicar las integrales en el cálculo de áreas y volúmenes.
Con esta asignatura se espera desarrollar la capacidad de análisis y síntesis en actividades de modelación matemática; adquirir estrategias para resolver problemas; elaborar desarrollos analíticos para la adquisición de un concepto; pensar conceptualmente, desarrollar actitudes para la integración a grupos interdisciplinarios; aplicar los conocimientos adquiridos a la práctica y aprovechar los recursos que la tecnología ofrece, como el uso TIC’s.
Esta asignatura sirve como base para otras asignaturas de las diferentes especialidades tales como: estática, dinámica y mecanismos, con la representación geométrica y álgebra de vectores; electromagnetismo y teoría electromagnética con el cálculo del gradiente, divergencia y rotacional de un campo vectorial; en termodinámica con el cálculo de derivadas parciales en las diferentes formas de la segunda ley; en fenómenos de transporte, transferencia de masa y transferencia de calor, con el cálculo de derivadas parciales y las ecuaciones que modelan estos fenómenos. Se pueden diseñar proyectos integradores con cualquiera de ellas.
2233 PROCESOS DE FABRICACIÓN
Esta asignatura aporta al perfil del ingeniero mecatrónico los conocimientos y habilidades necesarias donde administra, asegura la calidad, eficiencia, productibilidad y rentabilidad de los procesos para la fabricación de diferentes elementos empleados en máquinas, equipos y sistemas mecatrónicos.
Identificar el proceso de fabricación adecuado para piezas y selecciona adecuadamente los procesos de ensamble para la manufactura de productos.
Identificar el proceso de fabricación adecuado para piezas y selecciona adecuadamente los procesos de ensamble para la manufactura de productos.
2233 ELECTROMÁGNETISMO
Esta asignatura aporta al perfil del Ingeniero la capacidad para aplicar sus conocimientos y explicar fenómenos relacionados con los conceptos básicos de las leyes y principios fundamentales del Electromagnetismo; estos conocimientos son la base para la asignatura de circuitos eléctricos, de teoría electromagnética y máquinas eléctricas (transformadores, maquina síncrona, máquina de inducción y máquina de corriente continua).
Los temas de la asignatura están basados en los fundamentos de la electricidad y el magnetismo aplicándolos en el cálculo y solución de problemas de electrostática y electrodinámica que son de mayor aplicación en el quehacer profesional del ingeniero.
Los temas de la asignatura están basados en los fundamentos de la electricidad y el magnetismo aplicándolos en el cálculo y solución de problemas de electrostática y electrodinámica que son de mayor aplicación en el quehacer profesional del ingeniero.
2233 ESTÁTICA
La estática contribuye con las herramientas que le permiten al egresado, identificar, analizar y sintetizar sistemas mecánicos que se encuentran en equilibrio, aplicando principios físicos soportados por análisis matemáticos.
Los conocimientos afrontados y las competencias desarrolladas en estática son base, también, para comprender los contenidos de las posteriores asignaturas que cursarán, particularmente las de mecánica de materiales y diseño de elementos mecánicos.
La estática muestra al alumno, como se mencionó, herramientas esenciales para saber cómo construir diagramas de cuerpo libre, la aplicación de las ecuaciones de equilibrio de fuerzas concurrentes y no concurrentes, el cálculo de momentos, obtención de la ubicación de los centroides de línea, área y volumen, la obtención de momentos de inercia de áreas, etcétera, que le permiten el desarrollo de competencias que serán de gran ayuda para solucionar cualquier sistema en reposo que se encuentre sometido a fuerzas.
La asignatura se relaciona indirectamente con la de diseño de elementos mecánicos, ya que las competencias previas de ésta son las de mecánica materiales, que a su vez se basa en las competencias genéricas de la estática, en todos los temas del programa, específicamente en las siguientes:
• Interpretar la condición de equilibrio estático para la partícula y el cuerpo rígido,
• Resolver situaciones, en el plano o en el espacio, donde se involucra el equilibrio estático utilizando tanto la segunda ley de Newton y la expresión de momentos producido por una fuerza.
• Construcción de diagramas de cuerpo libre para determinar las cargas que afecten el sistema
• Obtener las fuerzas internas que actúan en cada elemento que conforman una estructura plana o bastidor.
• Calcular la ubicación del centroide de cualquier área. • Calcular el momento de inercia de cualquier área.
Los conocimientos afrontados y las competencias desarrolladas en estática son base, también, para comprender los contenidos de las posteriores asignaturas que cursarán, particularmente las de mecánica de materiales y diseño de elementos mecánicos.
La estática muestra al alumno, como se mencionó, herramientas esenciales para saber cómo construir diagramas de cuerpo libre, la aplicación de las ecuaciones de equilibrio de fuerzas concurrentes y no concurrentes, el cálculo de momentos, obtención de la ubicación de los centroides de línea, área y volumen, la obtención de momentos de inercia de áreas, etcétera, que le permiten el desarrollo de competencias que serán de gran ayuda para solucionar cualquier sistema en reposo que se encuentre sometido a fuerzas.
La asignatura se relaciona indirectamente con la de diseño de elementos mecánicos, ya que las competencias previas de ésta son las de mecánica materiales, que a su vez se basa en las competencias genéricas de la estática, en todos los temas del programa, específicamente en las siguientes:
• Interpretar la condición de equilibrio estático para la partícula y el cuerpo rígido,
• Resolver situaciones, en el plano o en el espacio, donde se involucra el equilibrio estático utilizando tanto la segunda ley de Newton y la expresión de momentos producido por una fuerza.
• Construcción de diagramas de cuerpo libre para determinar las cargas que afecten el sistema
• Obtener las fuerzas internas que actúan en cada elemento que conforman una estructura plana o bastidor.
• Calcular la ubicación del centroide de cualquier área. • Calcular el momento de inercia de cualquier área.
2233 MÉTODOS NUMÉRICOS
Esta asignatura aporta al perfil del Ingeniero la capacidad de aplicar herramientas matemáticas, computacionales y métodos experimentales en la solución de problemas para formular modelos, analizar procesos y elaborar prototipos. Así mismo le permite utilizar el pensamiento creativo y crítico en el análisis de situaciones relacionadas con la ingeniería mecánica, mecatrónica e hidrológica para la toma de decisiones. De igual forma, podrá participar en proyectos tecnológicos y de investigación científica con el objetivo de restituir y conservar el medio ambiente para propiciar un desarrollo sustentable.
Esta asignatura requiere haber cursado previamente la asignatura de Algoritmos y Programación así como del dominio de las competencias de Álgebra lineal en la solución de sistemas de ecuaciones lineales, Cálculo Diferencial para determinar si existe una derivada así como el cálculo de la misma en funciones, las herramientas para obtener integrales definidas en Cálculo integral y resolver ecuaciones diferenciales de primer grado lineales y no lineales en Ecuaciones Diferenciales, también los conceptos básicos de un análisis estadístico de Probabilidad y Estadística. Por lo que Métodos Numéricos es una asignatura integradora y se pueden desarrollar proyectos de integración con cualquiera de ellas.
El propósito de la asignatura es que el estudiante tenga las herramientas para resolver problemas de ingeniería, física y matemáticas que no pueden resolverse por técnicas analíticas por resultar demasiado complejas o laboriosas. Estos problemas se presentan en una gran variedad de situaciones complejas en asignaturas posteriores del plan de estudios de Ingeniería Mecánica y Mecatrónica como Ecuaciones Diferenciales, Mecánica de Materiales I y II, Termodinámica, Transferencia de calor, Mecánica de Fluidos, Análisis de fluidos, Vibraciones Mecánicas, Diseño Mecánico I y II, Diseño de elementos mecánicos y mecanismos.
Esta asignatura requiere haber cursado previamente la asignatura de Algoritmos y Programación así como del dominio de las competencias de Álgebra lineal en la solución de sistemas de ecuaciones lineales, Cálculo Diferencial para determinar si existe una derivada así como el cálculo de la misma en funciones, las herramientas para obtener integrales definidas en Cálculo integral y resolver ecuaciones diferenciales de primer grado lineales y no lineales en Ecuaciones Diferenciales, también los conceptos básicos de un análisis estadístico de Probabilidad y Estadística. Por lo que Métodos Numéricos es una asignatura integradora y se pueden desarrollar proyectos de integración con cualquiera de ellas.
El propósito de la asignatura es que el estudiante tenga las herramientas para resolver problemas de ingeniería, física y matemáticas que no pueden resolverse por técnicas analíticas por resultar demasiado complejas o laboriosas. Estos problemas se presentan en una gran variedad de situaciones complejas en asignaturas posteriores del plan de estudios de Ingeniería Mecánica y Mecatrónica como Ecuaciones Diferenciales, Mecánica de Materiales I y II, Termodinámica, Transferencia de calor, Mecánica de Fluidos, Análisis de fluidos, Vibraciones Mecánicas, Diseño Mecánico I y II, Diseño de elementos mecánicos y mecanismos.
2233 DESARROLLO SUSTENTABLE
La intención de esta asignatura es que el egresado adopte valores y actitudes humanistas, que lo lleven a vivir y ejercer profesionalmente de acuerdo con principios orientados hacia la sustentabilidad, la cual es el factor medular de la dimensión filosófica del SNIT. Se pretende, entonces, la formación de ciudadanos con valores de justicia social, equidad, respeto y cuidado del entorno físico y biológico, capaces de afrontar, desde su ámbito profesional, las necesidades emergentes del desarrollo y los desafíos que se presentan en los escenarios natural, social-cultural y económico. El reto es formar individuos que hagan suya la cultura de la sustentabilidad y en poco tiempo transfieran esta cultura a la sociedad en general.
La diversidad temática del programa conforma la comprensión del funcionamiento de las dimensiones de la sustentabilidad y su articulación entre sí. Se presentan estrategias para la sustentabilidad que se han diseñado y desarrollado por especialistas, organizaciones y gobiernos a nivel internacional, nacional y local. Se refuerzan competencias para mejorar el ambiente y la calidad de vida humana, desde una perspectiva sistémica y holística.
La asignatura, por su aportación al perfil profesional, debe impartirse entre el quinto y séptimo semestre de las carreras del SNIT. Se sugiere integrar grupos con estudiantes de las distintas carreras, para fomentar el análisis y ejecución de estrategias para el desarrollo sustentable regional desde la multidisciplina, a la vez que se desarrolla la competencia de trabajar de manera interdisciplinaria.
El docente que imparta esta asignatura deberá tener conocimientos en las áreas de: química, biología, microbiología, economía, sociología, educación ambiental; es recomendable que el docente tenga experiencia en la elaboración de proyectos dirigidos a temas de desarrollo sustentable.
La diversidad temática del programa conforma la comprensión del funcionamiento de las dimensiones de la sustentabilidad y su articulación entre sí. Se presentan estrategias para la sustentabilidad que se han diseñado y desarrollado por especialistas, organizaciones y gobiernos a nivel internacional, nacional y local. Se refuerzan competencias para mejorar el ambiente y la calidad de vida humana, desde una perspectiva sistémica y holística.
La asignatura, por su aportación al perfil profesional, debe impartirse entre el quinto y séptimo semestre de las carreras del SNIT. Se sugiere integrar grupos con estudiantes de las distintas carreras, para fomentar el análisis y ejecución de estrategias para el desarrollo sustentable regional desde la multidisciplina, a la vez que se desarrolla la competencia de trabajar de manera interdisciplinaria.
El docente que imparta esta asignatura deberá tener conocimientos en las áreas de: química, biología, microbiología, economía, sociología, educación ambiental; es recomendable que el docente tenga experiencia en la elaboración de proyectos dirigidos a temas de desarrollo sustentable.
2223-TUTORIAS III
"Fomentar el desarrollo de hábitos en los estudiantes que contribuyan a su superación personal y profesional.'
2223-2223-PROCESOS DE FABRICACIÓN
"Esta asignatura aporta al perfil del ingeniero mecatrónico los conocimientos y habilidades necesarias donde administra, asegura la calidad, eficiencia, productibilidad y rentabilidad de los procesos para la fabricación de diferentes elementos empleados en máquinas, equipos y sistemas mecatrónicos.
Identificar el proceso de fabricación adecuado para piezas y selecciona adecuadamente los procesos de ensamble para la manufactura de productos.
'
Identificar el proceso de fabricación adecuado para piezas y selecciona adecuadamente los procesos de ensamble para la manufactura de productos.
'
2223-2223-ELECTROMÁGNETISMO
"Esta asignatura aporta al perfil del Ingeniero la capacidad para aplicar sus conocimientos y explicar fenómenos relacionados con los conceptos básicos de las leyes y principios fundamentales del Electromagnetismo; estos conocimientos son la base para la asignatura de circuitos eléctricos, de teoría electromagnética y máquinas eléctricas (transformadores, maquina síncrona, máquina de inducción y máquina de corriente continua).
Los temas de la asignatura están basados en los fundamentos de la electricidad y el magnetismo aplicándolos en el cálculo y solución de problemas de electrostática y electrodinámica que son de mayor aplicación en el quehacer profesional del ingeniero.
'
Los temas de la asignatura están basados en los fundamentos de la electricidad y el magnetismo aplicándolos en el cálculo y solución de problemas de electrostática y electrodinámica que son de mayor aplicación en el quehacer profesional del ingeniero.
'
2223-2223-ESTÁTICA
"La estática contribuye con las herramientas que le permiten al egresado, identificar, analizar y sintetizar sistemas mecánicos que se encuentran en equilibrio, aplicando principios físicos soportados por análisis matemáticos.
Los conocimientos afrontados y las competencias desarrolladas en estática son base, también, para comprender los contenidos de las posteriores asignaturas que cursarán, particularmente las de mecánica de materiales y diseño de elementos mecánicos.
La estática muestra al alumno, como se mencionó, herramientas esenciales para saber cómo construir diagramas de cuerpo libre, la aplicación de las ecuaciones de equilibrio de fuerzas concurrentes y no concurrentes, el cálculo de momentos, obtención de la ubicación de los centroides de línea, área y volumen, la obtención de momentos de inercia de áreas, etcétera, que le permiten el desarrollo de competencias que serán de gran ayuda para solucionar cualquier sistema en reposo que se encuentre sometido a fuerzas.
La asignatura se relaciona indirectamente con la de diseño de elementos mecánicos, ya que las competencias previas de ésta son las de mecánica materiales, que a su vez se basa en las competencias genéricas de la estática, en todos los temas del programa, específicamente en las siguientes:
• Interpretar la condición de equilibrio estático para la partícula y el cuerpo rígido,
• Resolver situaciones, en el plano o en el espacio, donde se involucra el equilibrio estático utilizando tanto la segunda ley de Newton y la expresión de momentos producido por una fuerza.
• Construcción de diagramas de cuerpo libre para determinar las cargas que afecten el sistema
• Obtener las fuerzas internas que actúan en cada elemento que conforman una estructura plana o bastidor.
• Calcular la ubicación del centroide de cualquier área. • Calcular el momento de inercia de cualquier área.
'
Los conocimientos afrontados y las competencias desarrolladas en estática son base, también, para comprender los contenidos de las posteriores asignaturas que cursarán, particularmente las de mecánica de materiales y diseño de elementos mecánicos.
La estática muestra al alumno, como se mencionó, herramientas esenciales para saber cómo construir diagramas de cuerpo libre, la aplicación de las ecuaciones de equilibrio de fuerzas concurrentes y no concurrentes, el cálculo de momentos, obtención de la ubicación de los centroides de línea, área y volumen, la obtención de momentos de inercia de áreas, etcétera, que le permiten el desarrollo de competencias que serán de gran ayuda para solucionar cualquier sistema en reposo que se encuentre sometido a fuerzas.
La asignatura se relaciona indirectamente con la de diseño de elementos mecánicos, ya que las competencias previas de ésta son las de mecánica materiales, que a su vez se basa en las competencias genéricas de la estática, en todos los temas del programa, específicamente en las siguientes:
• Interpretar la condición de equilibrio estático para la partícula y el cuerpo rígido,
• Resolver situaciones, en el plano o en el espacio, donde se involucra el equilibrio estático utilizando tanto la segunda ley de Newton y la expresión de momentos producido por una fuerza.
• Construcción de diagramas de cuerpo libre para determinar las cargas que afecten el sistema
• Obtener las fuerzas internas que actúan en cada elemento que conforman una estructura plana o bastidor.
• Calcular la ubicación del centroide de cualquier área. • Calcular el momento de inercia de cualquier área.
'
2223-MÉTODOS NUMÉRICOS
"Esta asignatura aporta al perfil del Ingeniero la capacidad de aplicar herramientas matemáticas, computacionales y métodos experimentales en la solución de problemas para formular modelos, analizar procesos y elaborar prototipos. Así mismo le permite utilizar el pensamiento creativo y crítico en el análisis de situaciones relacionadas con la ingeniería mecánica, mecatrónica e hidrológica para la toma de decisiones. De igual forma, podrá participar en proyectos tecnológicos y de investigación científica con el objetivo de restituir y conservar el medio ambiente para propiciar un desarrollo sustentable.
Esta asignatura requiere haber cursado previamente la asignatura de Algoritmos y Programación así como del dominio de las competencias de Álgebra lineal en la solución de sistemas de ecuaciones lineales, Cálculo Diferencial para determinar si existe una derivada así como el cálculo de la misma en funciones, las herramientas para obtener integrales definidas en Cálculo integral y resolver ecuaciones diferenciales de primer grado lineales y no lineales en Ecuaciones Diferenciales, también los conceptos básicos de un análisis estadístico de Probabilidad y Estadística. Por lo que Métodos Numéricos es una asignatura integradora y se pueden desarrollar proyectos de integración con cualquiera de ellas.
El propósito de la asignatura es que el estudiante tenga las herramientas para resolver problemas de ingeniería, física y matemáticas que no pueden resolverse por técnicas analíticas por resultar demasiado complejas o laboriosas. Estos problemas se presentan en una gran variedad de situaciones complejas en asignaturas posteriores del plan de estudios de Ingeniería Mecánica y Mecatrónica como Ecuaciones Diferenciales, Mecánica de Materiales I y II, Termodinámica, Transferencia de calor, Mecánica de Fluidos, Análisis de fluidos, Vibraciones Mecánicas, Diseño Mecánico I y II, Diseño de elementos mecánicos y mecanismos.
'
Esta asignatura requiere haber cursado previamente la asignatura de Algoritmos y Programación así como del dominio de las competencias de Álgebra lineal en la solución de sistemas de ecuaciones lineales, Cálculo Diferencial para determinar si existe una derivada así como el cálculo de la misma en funciones, las herramientas para obtener integrales definidas en Cálculo integral y resolver ecuaciones diferenciales de primer grado lineales y no lineales en Ecuaciones Diferenciales, también los conceptos básicos de un análisis estadístico de Probabilidad y Estadística. Por lo que Métodos Numéricos es una asignatura integradora y se pueden desarrollar proyectos de integración con cualquiera de ellas.
El propósito de la asignatura es que el estudiante tenga las herramientas para resolver problemas de ingeniería, física y matemáticas que no pueden resolverse por técnicas analíticas por resultar demasiado complejas o laboriosas. Estos problemas se presentan en una gran variedad de situaciones complejas en asignaturas posteriores del plan de estudios de Ingeniería Mecánica y Mecatrónica como Ecuaciones Diferenciales, Mecánica de Materiales I y II, Termodinámica, Transferencia de calor, Mecánica de Fluidos, Análisis de fluidos, Vibraciones Mecánicas, Diseño Mecánico I y II, Diseño de elementos mecánicos y mecanismos.
'
2223-DESARROLLO SUSTENTABLE
"La intención de esta asignatura es que el egresado adopte valores y actitudes humanistas, que lo lleven a vivir y ejercer profesionalmente de acuerdo con principios orientados hacia la sustentabilidad, la cual es el factor medular de la dimensión filosófica del SNIT. Se pretende, entonces, la formación de ciudadanos con valores de justicia social, equidad, respeto y cuidado del entorno físico y biológico, capaces de afrontar, desde su ámbito profesional, las necesidades emergentes del desarrollo y los desafíos que se presentan en los escenarios natural, social-cultural y económico. El reto es formar individuos que hagan suya la cultura de la sustentabilidad y en poco tiempo transfieran esta cultura a la sociedad en general.
La diversidad temática del programa conforma la comprensión del funcionamiento de las dimensiones de la sustentabilidad y su articulación entre sí. Se presentan estrategias para la sustentabilidad que se han diseñado y desarrollado por especialistas, organizaciones y gobiernos a nivel internacional, nacional y local. Se refuerzan competencias para mejorar el ambiente y la calidad de vida humana, desde una perspectiva sistémica y holística.
La asignatura, por su aportación al perfil profesional, debe impartirse entre el quinto y séptimo semestre de las carreras del SNIT. Se sugiere integrar grupos con estudiantes de las distintas carreras, para fomentar el análisis y ejecución de estrategias para el desarrollo sustentable regional desde la multidisciplina, a la vez que se desarrolla la competencia de trabajar de manera interdisciplinaria.
El docente que imparta esta asignatura deberá tener conocimientos en las áreas de: química, biología, microbiología, economía, sociología, educación ambiental; es recomendable que el docente tenga experiencia en la elaboración de proyectos dirigidos a temas de desarrollo sustentable.
'
La diversidad temática del programa conforma la comprensión del funcionamiento de las dimensiones de la sustentabilidad y su articulación entre sí. Se presentan estrategias para la sustentabilidad que se han diseñado y desarrollado por especialistas, organizaciones y gobiernos a nivel internacional, nacional y local. Se refuerzan competencias para mejorar el ambiente y la calidad de vida humana, desde una perspectiva sistémica y holística.
La asignatura, por su aportación al perfil profesional, debe impartirse entre el quinto y séptimo semestre de las carreras del SNIT. Se sugiere integrar grupos con estudiantes de las distintas carreras, para fomentar el análisis y ejecución de estrategias para el desarrollo sustentable regional desde la multidisciplina, a la vez que se desarrolla la competencia de trabajar de manera interdisciplinaria.
El docente que imparta esta asignatura deberá tener conocimientos en las áreas de: química, biología, microbiología, economía, sociología, educación ambiental; es recomendable que el docente tenga experiencia en la elaboración de proyectos dirigidos a temas de desarrollo sustentable.
'